SOLUTION OF INTEGRAL EQUATIONS OF INVERSE
PROBLEMS OF HEAT CONDUCTION

P. V. Cherpakov UDC 536.24.02
A solution is given of integral equations of inverse problems of heat conduction by the method

of successive approximations and also by means of expansions in orthogonal systems of fune-
tions,

It is a well-known fact that the solution of the heat-conduction equation
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satisfying a zero initial condition for the half-line x = 0 and also the boundary condition
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is given by the integral
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In the special case when u(0, t) =u; where uyis a constant, we can transform the integral (3), upon mak-
ing the substitution o = x/2avt — 7, to the form
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It is obvious that v =ugat x = 0, and also at t = =, since the integral attains its largest value,
namely, /#/2, inthe limit, Ifuy;=1, thenv <1 for 0 <t < e,

With the aid of the solution (3) we can pose the inverse problem: Assuming an initial temperature of
zero, we may ask what source ¢{) at the point x = 0 will give rise, at some point x = ¢ of the half-line
x = 0, to a specified temperature f(t). Then, in accordance with Eq. (3}, the inverse problem reduces to
that of solving the following Volterra integral equation of the first kind:
2
£ Eexp [_E(té:r_)} g {r)ar
g 2V n(f—7)°

where the unknown function ¢(r) is determined as the solution of this equation, We have the inverse prob-
lem of heat conduction when we determine for the known value f¢) the boundary condition u(0, t) = ¢ft).
We substitute the value ¢{) so determined into the expression (3) and obtain the temperature distribution
in a semi-infinite rod.
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We can pose the following more general problem: Let it be required to find the source u(0, t) = ¢tt),
which would give rise to a temperature at a point x = ¢ of the half-line x > 0, differing from the tempera~
ture ¢¢) by a value equal to a specified function f(t). Then, in accordance with the relation (3), we have a
Volterra integral equation of the second kind,
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where A is a parameter. Inthis case we also have an inverse heat-conduction problem, wherein we wish
to determine the boundary condition ¢(t), defined as the solution of Eq. (6) for A =1, Problems which re-
duce to Egs. (5) and (8) can be found in [1].

We now clarify for which parameter values A solutions of Eq. - (6) exist.
We represent a solution of this equation in the form of a series,
| OO =@ Ay () -+ A g (O - ... 0
Substituting the series (7) into Eq. (6), we have the following relations:
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Assuming that f¢)| = f;for 0 =t =t), we then have
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where v < 1 according to the expression (4).

Carrying out successive estimates of the expressions in Eq. (8), we obtain

l(pn (t)[ < fovn *

From this it follows that the terms of the unknown series (7) do not exceed in absolute value the terms of
the majorizing series

foll A0+ .. A" 0" .0,

converging for any value {Al < 1/v, including, in particular, the value A =1, since v <1 for an arbitrary
time t, Hence, the series (7) converges uniformly, and the function ¢(t) satisfies the integral equation (6),
defining thereby a solution of the inverse problem. If inthe series (7) we retain only the first several
terms, we obtain an approximate value of the function @) with the help of successive approximations.

It should be noted that Eq. (5) becomes a Volterra equation of the second kind if we differentiate it
through with respect tot, assuming for this that the derivative f'({) is continuous, The solution of the
equation so obtained can be obtained by the same method used to solve Eq. (6).

We consider now the integral equation

t b
Fs, = | (K & t—01 @ 7)atar, ®)
0 a
where the kernel
. (%) 0, €
K & t—0= E‘p 008 erp (1, ) (10)
n==0

is represented in a bilinear form in x and £ with the 2id of the orthonormal system of functions {¢y(x)} on
the interval {«, b]. Here F(x, t) is a2 known function; f(x, t) is unknown; consequently, we have an inte-
gral equation of the first kind of mixed type (i.e., it is a Volterra equation with respect to the variable 7
and a Fredholm equation with respect to the variable £).

We expand the function

Fr, )= X F, ()0, (x). (11)
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in a series, where 9,(x) satisfies certain boundary conditions for x = 2 and x =b. The coefficients Fp(t)

904



are given by
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We also make the expansion )
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where the unknown coefficients fy(t) may be written, respectively,
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Substituting the kernel (10) into Eq. (9), and also the series (13) and (14), we can write the equation
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But we can readily verify that

Consequently, the coefficients f,¢) are determined in terms of the known coefficients Fn(¢); hence, upon
substituting the f; () so determined into Eq. (13), we obtain the solution f(x, t) of Eq. (9) in the form of an
expansion in terms of an orthogonal system of functions. By way of example, let us take the kernel of Eq.
(9) in the form given in [2]:
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Using it, we shall solve the inverse problem for the nonhomogeneous heat-conduction equation
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with the initial condition
u(x, 0)=0 (20)
and the boundary conditions
u, H=0, ud, H)=0. (21)

Then, in accordance with the expansions (11) and (13), we have
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Thus, if the function u{x, t) is known, the solution of the inverse problem is determined by the function
f(x, t).

Solutions of Eqs. (5) and (9), requiring special differentiability properties of the functions, can be
found by the method of regularization.
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The methods given here for solving integral equations of inverse heat conduction problems may be
extended to multidimensional equations. Inverse problems were treated in [3] by 2 somewhat different
method employing integral transformations.
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